The evolution of phenotypic plasticity in fish swimming

نویسندگان

  • Christopher E. Oufiero
  • Katrina R. Whitlow
چکیده

Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naturally occurring variation in tadpole morphology and performance linked to predator regime

Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life-history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic variations in the population and re...

متن کامل

Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis).

The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnet...

متن کامل

Chemical cues from fish heighten visual sensitivity in larval crabs through changes in photoreceptor structure and function.

Several predator avoidance strategies in zooplankton rely on the use of light to control vertical position in the water column. Although light is the primary cue for such photobehavior, predator chemical cues or kairomones increase swimming responses to light. We currently lack a mechanistic understanding for how zooplankton integrate visual and chemical cues to mediate phenotypic plasticity in...

متن کامل

The phenotypic plasticity of the aquatic invertebrate Caenis latipennis in response to environmental conditions in the Kheirood Kenar River, Iran

Phenotypic plasticity is the capability of an organism to change its shape in response to the environmental condition. The present study aimed to investigate the phenotypic plasticity of the aquatic invertebrate Caenis latipennis using outline analysis. Samples were collected from up- and downstream of the Kheirood Kenar River, identified to the species level and photographed using a digital ca...

متن کامل

Predator-driven phenotypic diversification in Gambusia affinis.

Predation is heterogeneously distributed across space and time, and is presumed to represent a major source of evolutionary diversification. In fishes, fast-starts--sudden, high-energy swimming bursts--are often important in avoiding capture during a predator strike. Thus, in the presence of predators, we might expect evolution of morphological features that facilitate increased fast-start spee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2016